50x^2+x^2=60^2

Simple and best practice solution for 50x^2+x^2=60^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50x^2+x^2=60^2 equation:



50x^2+x^2=60^2
We move all terms to the left:
50x^2+x^2-(60^2)=0
We add all the numbers together, and all the variables
51x^2-3600=0
a = 51; b = 0; c = -3600;
Δ = b2-4ac
Δ = 02-4·51·(-3600)
Δ = 734400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{734400}=\sqrt{14400*51}=\sqrt{14400}*\sqrt{51}=120\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120\sqrt{51}}{2*51}=\frac{0-120\sqrt{51}}{102} =-\frac{120\sqrt{51}}{102} =-\frac{20\sqrt{51}}{17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120\sqrt{51}}{2*51}=\frac{0+120\sqrt{51}}{102} =\frac{120\sqrt{51}}{102} =\frac{20\sqrt{51}}{17} $

See similar equations:

| x-(x-30000)*1.5/8=225000 | | 37.5y=30y+(4-y)/4×30y | | 336=5x+x | | 7+3(6-5x)=13-12x | | -m+√6m+19=2 | | 2-(5x-21)=7(x-2) | | x=180x4+200 | | X=4-5x-2x+20 | | 19x-6=12x-20 | | 2x-9=+17 | | 5x-3(2x-6)=27 | | 3-6b=-9 | | 5/3+2/3x=49/18+7/6x+5/6 | | (2z+3)=12 | | x+x^2=782 | | 3(-1)-2b=0 | | 1-(x/7)=3x+1 | | 4/8=u/96 | | y^=15+3.75X  | | y^=15+3.75X * | | 3x+9=12+3 | | x-40=25 | | 2x+24=42+18 | | 2.6q-5.3-3.8q=0.2-5.3 | | -10=-6x-2 | | 0.70x+0.05(12-x)=0.10(-85) | | 5x²-10x-22=0 | | 90=2x+130/3 | | X2-3x-15=13 | | -4y-4y=-8y | | 5x+68768676768676=5x+67786 | | 2x-14=124 |

Equations solver categories